Summary

Leishmaniasis is broadly classified into three types: cutaneous, mucocutaneous and visceral. The visceral form is most dangerous and can result in death. Although leishmaniasis is an ancient disease, its treatment is still challenging. Several drugs, differing in their cost, toxicity, treatment duration and emergence of drug resistance, are used for different types of leishmaniasis. To overcome these limitations, the search for newer drugs and other treatments continues. In this article, we discuss conventional drugs, other treatments, including newer options such as immunotherapy and immunochemotherapy, and future prospects for leishmaniasis treatment.

Introduction

Leishmaniasis, caused by protozoan of the genus *Leishmania*, is classified into three types: visceral (VL), cutaneous (CL) and mucocutaneous. The CL form is the most common whereas VL, also known as kala-azar, is the most severe. The currently available treatment options are associated with several limitations including adverse effects (AEs), cost, poor efficacy and the need for multiple injections. Emergence of drug resistance is another concern. Recently, owing to a deeper understanding of the disease pathogenesis, newer therapies such as immunotherapy and immunochemotherapy are being tried. Similarly, various therapeutic targets in the metabolic pathways of *Leishmania* are being continuously explored. In this article, we discuss a number of options for the management of leishmaniasis.

Chemotherapeutic agents

Historically, pentavalent antimony was considered the first-line drug treatment for leishmaniasis; however, it is associated with cardiotoxicity,¹ cirrhosis, pancreatic toxicity² and risk of resistance.³ Subsequently, amphotericin B (and lipid formulation) emerged as second-line therapies. Miltefosine has since been used in VL and CL; this has the advantages of being an oral drug with good efficacy and short course, but teratogenicity and drug resistance are its important limitations.

Existing drugs repurposed for leishmaniasis include amphotericin B, miltefosine, paromomycin and pentamidine. Azole antifungals have also studied for leishmaniasis; itraconazole was found to be superior to ketoconazole and fluconazole for inhibiting growth of most *Leishmania* strains.⁴ In a multicentre trial, paromomycin was found to be successful in Indian patients with VL, but was less efficacious in a Sudanese population.⁵ Pentamidine is used intramuscularly/intravenously, but is not available in an oral formulation. It has the advantage of a short course, but its efficacy varies for different *Leishmania* species, and its use may be associated with dysglycaemia and other AEs.

All these therapies are shown in Table 1.

Combination chemotherapy

To prevent drug resistance, improve compliance, shorten the duration of treatment and thereby reduce the cost of therapy, combination chemotherapy has
been developed. The various combinations include liposomal amphotericin B plus miltefosine, liposomal amphotericin B plus paromomycin, miltefosine plus paromomycin, and sodium stibogluconate/meglumine antimoniate plus paromomycin.6–8

Local therapies

Local therapies have been developed for limited CL as options to avoid toxicity with systemic use of drugs.

Photodynamic therapy (PDT), cryotherapy and thermotherapy have all been tried in CL (Table 2).

Photodynamic therapy

PDT involves the use of aminolaevulinic acid (ALA) or methyl-aminolaevulinate applied topically to the skin, followed by irradiation with laser or intense pulsed light. A few mechanistic studies have addressed the principles underlying the use of PDT for the treatment

Table 1 Chemothterapeutic agents for leishmaniasis.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Route of administration</th>
<th>Dose</th>
<th>AEs</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pentavalent antimonial</td>
<td>IM, IV or IL</td>
<td>20 mg/kg/day for 28–30 days</td>
<td>Cardiotoxicity, pancreatitis; nephrototoxicity; hypokalaemia</td>
<td>Easy availability (in endemic areas); low cost</td>
<td>Prolonged treatment duration; pain during injection, toxic AEs; drug resistance</td>
</tr>
<tr>
<td>Amphotericin B</td>
<td>IV</td>
<td>0.75–1 mg/kg/day for 15–20 days, daily or alternate daily</td>
<td>Renal toxicity; injection-related reactions; hypokalaemia</td>
<td>Primary resistance is not common;</td>
<td>Requires hospitalization for administration; nephrotoxicity; heat; instability</td>
</tr>
<tr>
<td>Liposomal amphotericin B</td>
<td>IV</td>
<td>10–30 mg/kg total dose (single dose; 3–5 mg/kg/dose)</td>
<td>Chills and rigors during injection; mild nephrotoxicity</td>
<td>High efficacy; low toxicity</td>
<td>High cost; need for slow IV infusion</td>
</tr>
<tr>
<td>Miltefosine</td>
<td>Oral</td>
<td>100–150 mg/day for 28 days</td>
<td>GI AEs; renal and liver toxicity; teratogenicity</td>
<td>Effective</td>
<td>High cost; possibly teratogenic; drug resistance; poor compliance</td>
</tr>
<tr>
<td>Paromomycin</td>
<td>IM (VL) or topical (CL)</td>
<td>15 mg/day for 21 days or 20 mg/kg for 17 days</td>
<td>Renal, ear and liver toxicity</td>
<td>Effective; relatively cheap</td>
<td>Varied efficacy according to geographical area; potential for resistance</td>
</tr>
<tr>
<td>Pentamidine</td>
<td>IM</td>
<td>3 mg/kg/day IM alternate daily for 4 injections</td>
<td>Hyperglycaemia; hypotension; tachycardia; electrocardiographic changes</td>
<td>Short course needed</td>
<td>Varied efficacy depending on Leishmania species</td>
</tr>
</tbody>
</table>

AD, adverse effect; CL, cutaneous leishmaniasis; GI, gastrointestinal; IL, intralesional; IM, intramuscular; IV, intravenous; VL, visceral leishmaniasis.

Table 2 Local therapies for cutaneous leishmaniasis.

<table>
<thead>
<tr>
<th>Type</th>
<th>Mechanism</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDT</td>
<td>Topical ALA/MAL, followed by laser or IPL; kills host cells and thus kills parasites</td>
<td>Rapid localized destruction of lesion</td>
</tr>
<tr>
<td>Cryotherapy</td>
<td>Reduces local tissue temperature, producing cryonecrosis</td>
<td>Usually not associated with secondary effects; short duration of therapy; potential for better compliance/adherence</td>
</tr>
<tr>
<td>Thermotherapy</td>
<td>Increases local tissue temperature by means of baths, infrared light, laser. Kills heat-sensitive parasites</td>
<td>Good efficacy, good safety profile</td>
</tr>
</tbody>
</table>

ALA, aminolaevulinic acid; IPL, intense pulsed light; MAL, methyl aminolaevulinate; PDT, photodynamic therapy.
of CL.9–11 In mechanistic and in vitro studies, ALA-PDT did not demonstrate any antileishmanial effects.9 However, in vivo studies showed that topical ALA-PDT resulted in extensive tissue destruction and significant reduction of parasite load. The macrophage number and interleukin-6 level decreased in the infected skin. The antileishmanial effects of ALA-PDT for CL are mediated through the killing of host cells. Owing to lack of sufficient data, topical ALA-PDT is not recommended in clinical practice.

Cryotherapy

Intracellular and extracellular ice-crystal formation and changes in cell membrane with cryotherapy ultimately result in damage to infected cells and destruction of amastigotes at temperatures below freezing. Cryonecrosis results in release of antigenic substances that induce immune response and result in healing of other lesions. Cryotherapy can be a good option for the treatment of CL, particularly given the various disadvantages of chemotherapy. It has shown excellent response in patients with skin lesions of 10–30 mm in size, those with fewer lesions and those with development of < 3 months.12 Cryotherapy in combination with intraleisional sodium stibogluconate was found to be very efficacious, resulting in 100% healing of CL lesions.13 In another study, combination treatment with itraconazole and cryotherapy resulted in 80.9% improvement in CL lesions, and liver toxicity risk was also reduced as the itraconazole dose could be reduced.14

Thermotherapy

The species of *Leishmania* causing cutaneous disease are heat-sensitive, and cannot grow or survive in temperatures > 39°C.15,16 Hence, thermotherapy has been considered as treatment option for CL lesions.

Radiofrequency (RF) therapy, a form of thermotherapy, has been tried in patients with CL. A study from Guatemala reported a cure rate of 73% in patients with CL, which were the same rates as obtained with a systemic pentavalent antimonial drug.17 In RF, heat penetrates uniformly to a depth of 4 mm, heating and killing the amastigote forms of *Leishmania* residing in the upper dermis, without damaging the surrounding skin. In two randomized studies, RF thermotherapy had a lower cure rate than systemic pentavalent antimonial drugs, but RF was cost-effective and had fewer AEs.18,19 Thermotherapy once every 3 weeks had a cure rate of 73%, whereas increasing the frequency to once weekly increased the cure rate to 81%.20

Newer options: immunotherapy

Modulation of the immune response for prophylactic and/or therapeutic purposes by using biological substances or molecules is the basic principle of immunotherapy.21 Immunotherapy augments the natural host defences, restores impaired effectors functions and also decreases host excessive response, either directly or indirectly.22 Immunotherapy in leishmaniasis constitutes vaccines, interferons (IFNs) and protein immunomodulators, or a combination of these.

Vaccines

Various types of vaccines including whole-killed parasites, fractionated *Leishmania* antigen, live-attenuated pathogens and recombinant proteins (produced by genetically engineered cells) have been developed. Third-generation vaccines are under investigation.

Interferons

IFNs are naturally occurring cytokines and commercially produced by recombinant DNA technology. They produce various biological functions including immunosuppressive actions. The cytokine IFN-γ can induce macrophages to kill intracellular *Leishmania*.23 IFN-γ-1b protein is administered with sodium antimony gluconate. It was found to be well tolerated and effective in patients with VLs refractory to monotherapy with pentavalent antimonial therapy.24,25 Use of IFN-γ in untreated cases of VL led to accelerated parasitological control26,27 along with increased clinical efficacy of pentavalent antimonial therapy.27 In the study of Squires *et al.*, combination of IFN-γ and pentavalent antimonial therapy for 1 month produced a negative spleen culture more quickly among patients with VL.28

Immunomodulators

The immunomodulator protein aggregate magnesium–ammonium phospholinoleatepalmitoleate anhydride was found to improve clinical signs in canine VL and significantly reduce parasite load in the skin.28

Combination therapy

Immunotherapeutic and chemotherapeutic agents have been used to produce a synergistic action in activating the immune system and by the direct action of drugs on the infectious agent.21
Future prospects

Endochin-like quinolones are competitive inhibitors of the cytochrome bc1 complex, which can affect the mitochondrial electron transport chain (ETC) in several species of Leishmania. Hydroxynaphthoquinone–buparvaquone acts by depleting adenosine triphosphate (ATP) levels and thereby producing inhibition of the ETC in amastigotes.34

New benzophenone-derived bisphosphonium salts are leishmanicidal and target complex II of the respiratory chain of the parasite, leading to death.30 Artemisinin showed antileishmanial activity by triggering induction of cell cycle arrest and apoptosis.31

Tafenoquine impairs the bioenergetic metabolism of Leishmania promastigotes, causing a rapid drop in intracellular ATP levels, resulting in apoptosis and thereby leading to mitochondrial dysfunction.32

The major sterols essential for growth and viability in trypanosomatids are ergosterol and 24-methyl sterol, hence, the sterol and fatty acid metabolic pathway can be a potential drug target in leishmaniasis. In experimental studies, simvastatin and atorvastatin and resveratrol were found to inhibit the growth of Leishmania donovani promastigotes.33 Other enzymes involved in sterol biosynthesis are also potential targets for antileishmanial drugs.

ALK phospholipid analogues have recently been demonstrated as possible target drugs. In experimental studies, edelfosine killed both Leishmania promastigotes and amastigotes.34

Polyamines are strongly associated with cell survival, growth and proliferation. Various enzymes involved in polyamine metabolism and folate metabolism can also be used as targets for antileishmanial activity.

Conclusion

Chemotherapeutic regimens used for treatment of leishmaniasis are associated with several AEs. Advances in the understanding of the pathogenesis have resulted in development of various drugs targeting different biochemical pathways. Newer treatments such as immunotherapy and immunochemotherapy are gaining importance.

References

CPD questions

Learning objective

To demonstrate up-to-date knowledge in the management of leishmaniasis.

Question 1

Which of the following forms of leishmaniasis is most severe?

(a) Visceral form.

(b) Cutaneous form.

(c) Mucocutaneous form.

(d) Cutaneous as well as mucocutaneous form.

(e) Mucocutaneous and visceral form.

Question 2

Which of the following drugs can be given by oral route in the treatment of leishmaniasis?

(a) Amphotericin B.

(b) Pentavalent antimonial.

(c) Liposomal amphotericin.

(d) Miltefosin.

(e) Paromomycin.
Question 3
What is the advantage of liposomal amphotericin B over conventional amphotericin B?
(a) Increase efficacy.
(b) Reduce toxicity.
(c) Increase efficacy and minimize toxicity.
(d) Reduce cost.
(e) Reduce plasma exposure.

Question 4
In which of the following types of aminolaevulinic acid is used as a part of therapy against leishmaniasis?
(a) Cryotherapy.
(b) Photodynamic therapy.
(c) Thermotherapy.
(d) Parenteral therapy.
(e) Preventive therapy.

Question 5
Which of the following routes are used for administration of pentavalent antimonials in the treatment of leishmaniasis?
(a) Oral.
(b) Topical application (e.g. cream).
(c) Oral and topical application.
(d) Intravenous.
(e) Intravenous, intramuscular and intralesional.

Instructions for answering questions
This learning activity is freely available online at http://www.wileyhealthlearning.com/ced
Users are encouraged to
• Read the article in print or online, paying particular attention to the learning points and any author conflict of interest disclosures
• Reflect on the article
• Register or login online at http://www.wileyhealthlearning.com/ced and answer the CPD questions
• Complete the required evaluation component of the activity

Once the test is passed, you will receive a certificate and the learning activity can be added to your RCP CPD diary as a self-certified entry.
This activity will be available for CPD credit for 2 years following its publication date. At that time, it will be reviewed and potentially updated and extended for an additional period.